
Efficient String Matching Using Bit Parallelism
Kapil Kumar Soni, Rohit Vyas, Dr. Vivek Sharma

TIT College, Bhopal, Madhya Pradesh, India

Abstract: Bit parallelism is an inherent property of computer
to perform bitwise a parallel operation on computer word, but
it is performed only on data available in single computer
word. Bit parallelism inherently favors parallelism of bit
operations within computer word. Parallel computing
comprises bit parallelism and analyzed that it can be carried
out “in parallel” which ensures utilizing the word size of
computer. This technique is being properly utilized to work
out on various string matching problems for increasing the
efficiency of various real world applications. Since 1992 bit
parallelism is being used in string matching applications to
improve the matching pace. There are a variety of important
bit parallel string matching algorithms exist like Shift-OR,
BNDM, TNDM, SBNDM, BNDMq, Shift-OR with Q-Gram,
and Multiple Patterns BNDM. This paper discusses the
various important bit parallel string matching algorithms by
means of example along with their advantages and
disadvantages.

Keywords: String Matching, Bit Parallelism, Shift-OR,
BNDM, TNDM, SBNDM, BNDMq, Shift-OR with Q-Gram,
Multiple pattern BNDM.

I. INTRODUCTION
Bit parallelism [1] is a built in quality of computer in which
basic bit wise operations like AND, OR, NOR etc, are
performed parallel within the computer word in the single
clock cycle. Equivalent to computer word there are basic
registers available for holding a data unit in the computer.
Figure 1 describes how the bit parallelism can be achieved
in the computer.
With the use of bit parallelism in the field of String
Matching, matching speed is improved up to certain level.
But using such kinds of bit parallel based string matching,
matching is quite difficult and having number of limitations
[2]. These algorithms can be used in most of the real world
applications [3] where string matching is required like as
Intrusion Detection system, Plagiarism detection, Data
Mining & Bioinformatics and etc.
Bit parallel string matching algorithms are faster than the
other benchmark character matching based algorithms like
as KMP [4], BM [5], BMH [6], BMHS [7], BMHS2 [8],
BMI [9], Improved BMHS [10], Wu Manber [11] and Aho-
Corasick [12] etc.
The Bit Parallel algorithms are based on the simulation of
non-deterministic automata. It is simply the efficient
simulation of non-deterministic automata. Figure 1 shows
bit parallelism behaviour inside a computer.
Some of the important bit parallel string matching
algorithms are Shift-OR [13], BNDM [14], TNDM [15],
SBNDM [15], BNDMq [17], Shift-OR with Q-Gram [16],
and Multiple pattern BNDM [18]. BNDM, TNDM,
SBNDM and BNDMq are the single pattern string

matching algorithms whereas Shift-OR, Shift-OR with Q-
grams and Multiple Patterns BNDM are the multiple
pattern string matching algorithms.
This paper presents the working of above mentioned bit
parallel string matching algorithms with examples. Here we
elaborate the advantages and disadvantages of these
algorithm and gives the bit parallel string matching history.

Figure 1: Bit Parallelism in Computer

II. HISTORY OF BIT PARALLEL STRING MATCHING

In 1992 the Baeza–Yates and Gonnet gives the first bit
parallel string matching algorithm named Shift- OR
algorithm [13]. It was approximate multiple patterns string
matching algorithm.
In 1998, based on Shift-OR algorithm Navarro and Raffinot
proposed a new algorithm named as BNDM (Backward
Non Deterministic Matching) [14]. BNDM is exact single
pattern string matching algorithm. In BNDM algorithm,
AND or SHIFT operation is used. BNDM set the
benchmark in the string matching algorithm.
After BNDM in 2003 Peltola and Tarhio presented an
improved version of BNDM named TNDM (Two Way Non
Deterministic Matching) [15]. Except mismatch at last
position this algorithm is same as BNDM algorithm. In
2003 another algorithm Simplified BNDM also known as
SBNDM [15] was suggested. It was an enhanced version of
BNDM. Here we do not require finding the longest prefix
which will give the better performance in some cases.
In 2006 an enhanced edition of Shift-OR algorithm was
launched by Salmela, Tarhio and Kytojoki known as Shift
OR with Q-Gram [16]. It is also an approximate multiple

Kapil Kumar Soni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 265-269

www.ijcsit.com 265

string matching algorithm. It considers Q character at a
time for scanning.
In 2009 Branislav Durian, Jan Holub, Hannu Peltola and
Jorma Tarhio presented the concept of Q-gram in BNDM
algorithm known as BNDMq [17]. It scans the Q characters
at each arrangement. In 2010 Changsheng Miao, Guiran
Chang and Xingwei combine the concept of Q-gram with
BNDM and implemented Multiple Pattern BNDM
Algorithm [18]. Figure 2 shows the timeline history of bit
parallel string matching algorithms.

III. BIT PARALLEL STRING MATCHING ALGROITHMS
A. Shift-OR Algorithm:
Shift-OR [13] Algorithm gives the approximate matching
results it means algorithm matching results may contain
errors. In Shift OR algorithm searching is done from left to
right. But this is designed for working on patterns of equal
length plus the length less than or equal to the size of a
computer word.
Maximum multiple pattern algorithms are based on the
automata theory. They build automata of the patterns in
pre-processing phase. When the pattern set size is increased
then the size of automata also increases which is difficult to
maintain. Shift-OR algorithm is a replication of a
nondeterministic automata. It is suitable to be implemented
in hardware. Shift OR consist of two phases pre-processing
and searching.

Figure 2: Bit Parallel String Matching Timeline History

In pre-processing phase we find out the bit vector of the
every character which is possibly exists in the text. In this
ith

 corresponding bit is zero the same character appears at
position ‘i’ otherwise place 1 at ith position and write this in
reverse order. In searching phase automaton has a transition
from state ’i’ to ‘i+1’ on the basis of input character say 'c'.
If ‘ith’ bit in B[c] is 0, and in state vector D where ‘ith’ bit is
0 indicates that 0 occurs at MSB so we find the pattern at
that particular position. In Shift OR algorithm pre-
processing and searching both are simple. Here only Shift
and AND are used and no buffering is required. This
algorithm is working on the patterns whose lengths are
equal. Let’s take an example to understand Shift OR
algorithm.

Suppose King, thin and Apps be the patterns of length 4
and "DeepthinKing" be the text of length 12.
Bit Vector: B [K] = 1110, B [i] = 1001, B [n] = 0011, B [g]
= 0111, B [t] = 1110, B [h] = 1101, B [a] = 1110, B [p] =
1001, B [s] = 0111 and for others 1111. Table 1 shows the
algorithm processing for this example. And the initial Bit
vector D is initialized to all 1’s.
D = 1111, pos = 1 & D = D<<1.

Table 1 : Shift-OR Algorithm Processing Example

S.NO. Matching Process Comments

1

Scan "D"
D = (1110) OR
(B[D]=1111)

D= 1111

Remain in the same
state because MSB is
not zero. D contains All
1's.

2

Scan "e"
pos = pos+1=2

D= D<<1
D=(1110) OR
(B[e]=1111)

D=1111

Remain in the same
state because MSB is
not zero. D contains All
1's.

3

Scan "e"
pos = pos+1=3

D= D<<1
D=(1110) OR
(B[e]=1111)

D=1111

Remain in the same
state because MSB is
not zero. D contains All
1's.

4

Scan "p"
pos = pos+1=4

D= D<<1
D=(1110) OR
(B[p]=1001)

D=1111

Remain in the same
state because MSB is
not zero. D contains All
1's.

5

Scan "t"
pos = pos+1=5

D= D<<1
D=(1110) OR
(B[t]=1110)

D=1110

Move to the next
state because D not
contains All 1's.

6

Scan "h"
pos = pos+1=6

D= D<<1
D=(1100) OR
(B[h]=1101)

D=1101

Move to the next
state because D not
contains All 1's.

7

Scan "i"
pos = pos+1=7

D= D<<1
D=(1010) OR
(B[i]=1001)

D=1011

Move to the next
state because D not
contains All 1's.

8

Scan "n"
pos = pos+1=8

D= D<<1
D=(0110) OR
(B[n]=0011)

D=0111

MSB = 0 means
patterns found at pos-
m+1 i.e. 8-4-1=5.

Kapil Kumar Soni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 265-269

www.ijcsit.com 266

9

Scan "K"
pos = pos+1=9

D= D<<1
D=(1110) OR
(B[K]=1110)

D=1110

Move to the next
state because D not
contains All 1's.

10

Scan "i"
pos = pos+1=10

D= D<<1
D=(1100) OR
(B[i]=1001)

D=1110

Move to the next
state because D not
contains All 1's.

11

Scan "n"
pos = pos+1=11

D= D<<1
D=(1010) OR
(B[n]=0011)

D=1011

Move to the next
state because D not
contains All 1's.

12

Scan "g"
pos = pos+1=12

D= D<<1
D=(0110) OR
(B[K]=0111)

D=0111

MSB = 0 means
patterns found at pos-
m+1 i.e. 8-4-1=5.

B. BNDM Algorithm:
BNDM i.e. Backward Non Deterministic Matching [14] is
single pattern exact string matching algorithm. In BNDM
we scan the text from right to left respective of pattern.
BNDM matching concept is based on shift OR Algorithm
and suffix automata from BDM (Backward Deterministic
Matching) Algorithm. This algorithm is simulation of BDM
algorithm with the use of bit parallelism. BNDM simulates
the non-deterministic version using bit parallelism.
BNDM comprises of two phases pre-processing and
searching. In pre-processing phase we find Bit Vectors of
each character that will possibly come in text. This is done
by using the pattern characters. Bit Vectors are to be
calculated by putting 1 for occurrence and 0 for non-
occurrence of the character and we first take bit vector D
with initial value i.e. all one. Here bit vector size is less
than or equal to the word length of the computer. While
searching, the pattern is searched with the help AND &
SHIFT operations. Pattern is searched when MSB of D is 1
and value of character count pointer is 0.
For example Let Text T = ‘DeepthinKing' and Pattern P =
‘King'. The Bit vectors of the characters are B [k] = 1000,
B [i] = 0100, B [n] = 0010, B [g] = 0001 and other = 0000.
Initial Value of D = 1111, pos = 0, j = 4 and last = 4. Table
2 shows the BNDM algorithm processing example.

Table 2 : BNDM Algorithm Processing Example
S.No. Matching Process Comments

1

Scan "p"
D = D &B[Tpos + j]

D= (D=1111)&(B[p]=0000)
D=0000.

pos = pos +last =4
D=1111, j=4, last=4

D is all zero
means
mismatch
with zero
suffix entry.

2

Scan "n"
D = D &B[Tpos + j]

D= (D=1111)&(B[n]=0010)
D=0010.
j = j-1= 3,

D<<1 i.e. 0100

Searching for
suffix move
right to left.

3

Scan "i"
D = D &B[Tpos + j]

D= (D=0100)&(B[i]=0100)
D=0100.
j=j-1=2.

D<<1 i.e. 1000

Searching for
suffix move
right to left.

4

Scan "h"
D = D &B[Tpos + j]

D= (D=1000)&(B[h]=0000)
D=1000.

pos = pos +last =8
D=1111, j=4, last=4

Mismatch at
h. Shift by h.

5

Scan "g"
D=1111 , pos=8, j=4 and last=4

D = D &B[Tpos + j]
D= (D=1111)&(B[g]=0001)

D=0001
j=j-1=3.

D<<1 i.e. 0010.

Searching for
suffix move
right to left.

6

Scan "n"
D = D &B[Tpos + j]

D= (D=0010)&(B[n]=0010)
D=0010
j=j-1=2.

D<<1 i.e. 0100.

Searching for
suffix move
right to left.

7

Scan "i"
D = D &B[Tpos + j]

D= (D=0100)&(B[i]=0100)
D=0100
j=j-1=1.

D<<1 i.e. 1000.

Searching for
suffix move
right to left.

8

Scan "K"
D = D &B[Tpos + j]

D= (D=1000)&(B[K]=1000)
D=1000
j=j-1=0.

MSB having
1 means
pattern found
at position 5.

BNDM algorithm is faster than the previous algorithm Shift
OR, BDM and other character based algorithms. It
Occupies very less space and perform various operations in
parallel. It is very simple and flexible algorithm. Here
pattern is assume to the less than or equal to the word size
of computer.
C. TNDM Algorithm:
TNDM i.e. Two Ways Non Deterministic Matching [15] is
Single pattern exact string matching algorithm. It is similar
to the BNDM algorithm, but having only a single change, if
mismatch occur at last position instead of shifting like
BNDM, TNDM go forward to find suffix of reverse
pattern. Due to this sometimes number of examined
characters is less than BNDM. Therefore matching is faster
than the BNDM in such cases. Figure 3 shows the basic
processing structure of TNDM algorithm.

Kapil Kumar Soni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 265-269

www.ijcsit.com 267

D. SBNDM Algorithm:
SBNDM [15] i.e. Simple Backward Non Deterministic
Matching is same as BNDM algorithm. SBNDM is having
some changes, for calculating the shifts. Because of that
mechanism SBNDM algorithm is faster than the BNDM
algorithm. Here we are not going to finding the largest
prefix for shifting. Here we always go for first prefix.

In SBNDM, the average length of shift is reduced. Here the
innermost loop of algorithm becomes simple. It is faster
than the BNDM algorithm in some of the favourable cases.
Figure 4 shows the shifting logic of the SBNDM
Algorithm.

Figure 3: TNDM shifting logic

Figure 4: SBNDM shifting logic

E. BNDMq Algorithm:
BNDM with Q-gram [17] is an enhanced variation of the
Basic BNDM algorithm. In BNDMq, the q-characters are
read at each alignment before testing the state variable. In
this algorithm loop has been made in order to quickly
advance m-q+1 position, where m is the length of pattern.
Here q can be varied according to our requirement. The
whole algorithm can be easily understood with the help of
the example given below.
We perform the BNDMq algorithm whose various step are
described in the example shown in Table 3. Here we don’t
enter the loop until the q gram is matched.
Let us assume the text is "DeepthinKing" and pattern is
"King". Bit vector B [K] = 1000, B [i] = 0100, B [n] =
0010, B [g] = 0001 and other = 0000.

Table 3: BNDMq Processing Example
S.No. Matching Process Comments

1

Q=2,i=3
D <= f(i,q) i.e. f(3,2)

D=(B[e]=0000&B[p]<<1=0000)
D=0000

So i=i+m-q+1=6

No match
shifts the
window.

2

D<= f(6,2)
D=(B[h]=0000&B[i],<<1=1000)

D=0000
So i=i+m-q+1=9

No match
shifts the
window.

3

D<= f(9,2)
D=(B[K]=1000&B[i]<<1=1000)

D=1000
First = i-(m-q+1)=6

Match shift
the window
by next Q.

4

D<= f(11,2)
D=(B[n]=0010&B[g]<<1=0010)

D=0010
First = i-(m-q+1)=8, j=10
D=(D=0100 & B[i]=0100)

D=0100
Left shift

J=9
D=(1000&B[K]=1000)

D=1000

MSB 1
means pattern
found.

F. Shift-OR with Q-Grams:
Shift OR with Q-gram [16] is an improved version of the
Shift-OR algorithm. In Shift-OR with Q-gram algorithm we
take Q character at a time for comparison by doing this, the
size of simulation automata will be reduced and the number
of comparisons for finding pattern is reduced up to certain
level. The Q-gram can be Successive Q-gram or Overlie Q-
gram. In Successive Q-gram we read pattern in a sequence
of q character at a time while in Overlie Q-gram we take q
character from each character of the patterns.
Let us take an example of Shift-OR Successive 2-Gram
where Text is "DeepthinKing" and Patterns are ‘inKing’,
and ‘epthin’. Hence the Successive 2-gram of patterns are
B [in] = 010, B [Ki] = 101, B [ng] = 011, B [ep] = 110, B
[th] = 101 and other = 111. Table 4 shows the processing of
the algorithm.

Table 4: Shift-OR with Q-grams Example
S.No. Matching Process Comments

1 D=111 ,D<<1
D=((D=110)OR(B[De]=111)

D=111

No match
remain the same
state

2 D=111 ,D<<1
D=((D=110)OR(B[ee]=111)

D=111

No match
remain the same
state

3 D=111 ,D<<1
D=((D=110)OR(B[ep]=110)

D=110

Move to next
state

4 D=110 ,D<<1
D=((D=100)OR(B[th]=101)

D=101

Move to next
state

5 D=101 ,D<<1
D=((D=010)OR(B[in]=010)

D=010

MSB 0 means
pattern match.

6 D=101 ,D<<1
D=((D=100)OR(B[Ki]=101)

D=101

Move to next
state

7 D=101 ,D<<1
D=((D=010)OR(B[ng]=011)

D=011

MSB 0 means
pattern match.

Kapil Kumar Soni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 265-269

www.ijcsit.com 268

Because of the Q-Grams technique Shift-OR Algorithm
becomes faster and the total number of false matches is
reduced.

G. Multiple Patterns BNDM Algorithm:
Changsheng Miao, Guiran Chang and Xingwei Wang
convert the BNDM algorithm in multiple pattern BNDM
algorithms [17]. They develop Filtering Based Multiple
String Matching Algorithm by Combining Q-Grams and
BNDM. It is very simple algorithm and may contain false
matches. In multiple pattern BNDM string matching
algorithm multiple patterns can be searched this was not
possible in normal BNDM algorithm. We need filtering
after pattern match to find the exact match which will take
extra time to search. This algorithm is the similar to Shift-
OR with Q-gram only the change is instead of Shift-OR it
uses the BNDM matching process.

IV. CONCLUSION
Bit parallelism is the inherent behaviour of the computer
through which we can get the speed-up in various real
world applications where bitwise operations are used. Bit
parallel string matching algorithms are the new series of
efficient algorithms. BNDM, TNDM, SBNDM, BNDMq
are the bit parallel single pattern string matching algorithms
and Shift-OR, Shift-OR with Q-Grams, multiple pattern
BNDM are used for multiple pattern matching bit parallel
algorithms. These are efficient while comparing to standard
character based algorithm. These algorithms have some
disadvantages, major disadvantage of these algorithm is
working on patterns of length less than or equal to
computer word. Multiple pattern algorithms were working
on the pattern of equal length and it allows the
approximation in matching results.

V. FUTURE WORK
Multiple pattern bit parallel exact string matching
algorithm is not available yet. So multiple pattern exact
string matching is required for matching. Word size
limitation present in the bit parallel algorithm can also be
removed in future.

REFERENCES
[1].Vidya Saikrishna, Akhtar Rasool and Nilay Khare, “Time Efficient

String Matching Solution for Single and Multiple Pattern using Bit
Parallelism”, In procd. Of International Journal of Computer
Applications (0975 – 8887) Volume 46– No.6, May 2012.

[2].Christian Charras and Thierry Lecroq,” Handbook of Exact
String_Matching Algorithms”, Published in King’s college
publication, Feb 2004.

[3].Vidya Saikrishna, Akhtar Rasool and Nilay Khare, "String Matching
and its Applications in Diversified Fields",IJCSI International
Journal of Computer Science Issues, Vol. 9, Issue 1, No 1, January
2012 Page-219-226. ISSN (Online): 1694-0814.

[4]. Knuth D E, Morris Jr J. H and Pratt V. R,” Fast pattern matching in
strings”, In the procd. Of SIAM J.Comput., Vol. 6, 1, pp. 323–350,
1977.

[5]. Boyer R S and Moore J S,”A fast string searching algorithm”,
Communication of ACM 20, Vol. 10, pp. 762–772, 1977.

[6] Horspool R N,”Practical fast searching in strings”, In proc. Of
Software Practical Exp, Vol. 10, 6, pp. 501–506, 1980.

[7].Timo Raita,”Tuning the Boyer–Moore–Horspool String Searching
Algorithm”, In the proc. of Software Practice and Experience, Vol.
22(10), pp. 879–884, Oct. 1992.

[8].Jingbo Yuan, Jisen Zheng and Shunli Ding, “An Improved Pattern
Matching Algorithm”, In the proc. of Third International Symposium
on Intelligent Information Technology and Security Informatics
(IITSI), pp. 599-603, 2-4 April 2010.

[9] Linquan Xie, Xiaoming Liu and Guangxue Yue, “Improved Pattern
Matching Algorithm of BMHS”, In the proc. of International
Symposium on Information Science and Engineering (ISISE), pp.
616-619, 24-26 Dec 2010.

[10]. JingboYuan, Jinsong Yang and Shunli Ding,” An Improved Pattern
Matching Algorithm Based on BMHS”, In the proc. Of 11th
International Symposium on Distributed Computing and
Applications to Business, Engineering & Science, 2012.

[11]. Baojun Zhang , XiaoPing Chen , Lingdi Ping , Wu, Zhaohui,
”Address Filtering Based Wu-Manber Multiple Patterns Matching
Algorithm”, In the proc. of 2009 Second International Workshop on
Computer Science and Engineering[WCSE], Qingdao, Vol.1, pp.
408 – 412,28-30 Oct. 2009.

[12]. Alfred v aho and Margaret j corasick,”efficient string matching: an
aid to bibliographic search” communication of acm, vol. 18, June
1975.

[13].Ricardo A. Baeza-Yates and Gaston H. Gonnet,”A New Approach to
Text Searching”, In Communications of the ACM, pp. 74-82, Oct
1992.

[14]. G. Navarro and M. Raffinot, “Fast and flexible string matching by
combining bit-parallelism and suffix automata”,ACM Journal.
Experimental Algorithmics 1998.

[15]. Hannu Peltola and Jorma Tarhio,” Alternative Algorithms for Bit-
Parallel String Matching”, String Processing and Information
Retrieval, Spire Springer, LNCS 2857, pp. 80-93, 2003.

[16]. L. Salmela, J. Tarhio, and J. Kytojoki, “Multi pattern string matching
with q-grams”, Journal of Experimental Algorithms, Volume 11, pp.
1-19, 2006.

[17].Branislav Durian, Jan Holub, Hannu Peltola and Jarma
Tarhio,”Tuning BNDM with q-grams”, In the proc. Of workshop on
algorithm engineering and experiments, SIAM USA, pp. 29-37,
2009

[18].Changsheng Miao, Guiran Chang and Xingwei Wang,” Filtering
Based Multiple String Matching Algorithm Combining q-Grams and
BNDM”, In proc. Of Fourth International Conference on Genetic
and Evolutionary Computing, 2010.

Kapil Kumar Soni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 265-269

www.ijcsit.com 269

